The paper presents an overview of the advances in recent years on the finite element method (FEM) and on particle-based methods for the simulation of industrial metal forming processes. More specifically, we present the evolution of the FEM in the field from the early plastic/viscoplastic flow approaches to the new stabilized FEM for analysis of multiphysics bulk forming processes. Also the paper describes the state of the art in the new rotation-free shell elements for simulation of sheet stamping processes. Finally, we present the so-called Particle Finite Element Method (PFEM), as a component of a family of new computational techniques integrating particle-based methods and meshbased procedures. The PFEM is particularly suited for large deformation problems in solids and fluids involving nonlinear mechanical and geometrical effects, fluid-structure interactions and frictional contact situations. Applications of the FEM and the PFEM to several metal and material forming processes are presented.
Advances on finite element methods and particle -based methods for metal forming processes
FREE!